从大方向上来看, 和 的核心思路是类似的。两种方法都是以多轮对话搜索树的形式来增强 LLM 解决复杂问题的能力。主要区别在于 采用了深度优先(DFS)/广度优先(BFS)/集束(beam)搜索,而 则提出由强化学习(Reinforcement Learning)训练出的 “ToT 控制器”(ToT Controller)来驱动树的搜索策略(包括什么时候回退和搜索到哪一级回退等等)。深度优先/广度优先/集束搜索是通用搜索策略,并不针对具体问题。相比之下,由强化学习训练出的 ToT 控制器有可能从新的数据集学习,或是在自对弈(AlphaGo vs. 蛮力搜索)的过程中学习。因此,即使采用的是冻结的 LLM,基于强化学习构建的 ToT 系统仍然可以不断进化,学习新的知识。